

UNIVERSITY OF CALGARY

INTRODUCTION

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology is commonly used to make efficient, reliable and defined targeted changes in the genome of living cells. Commonly, CRISPR technology has been used to make precise edits allowing existing genes to be removed and/or new ones added. In this project, we utilize the technology of CRISPR to activate genes through the use of a modified Cas9 activation nuclease.

Facioscapulohumeral muscular dystrophy (FSHD) is a disease characterized by myasthenia and atrophy and has an estimated prevalence of 1 in 20,000 people. This disease is caused by genetic changes involving the D4Z4 region on chromosome 4. This region contains the DUX4 gene, which is silenced in normal function. In patients diagnosed with FSHD, hypomethylation of the D4Z4 region prevents the DUX4 gene from being silenced.

With the use of CRISPR technology, we will be able to effectively generate expression of the DUXBL gene (homologous to the DUX4 gene in humans) in mice to model FSHD and illustrate the effectiveness of CRISPR activation technology.

MATERIALS / METHODS

USING CRISPR/CAS9 TECHNOLOGY TO MODEL FACIOSCUPULOHUMERAL **MUSCULAR DYSTROPHY (FSHD)**

Sanchit Chopra, Derek Toms, Mark Ungrin

Department of Compartive Biology & Experimental Medicine, Faculty of Veterinary Medicine

Query_1: 11.5K (1.5K	bp) - Find:		✓	⇒∣Q.	0		⇒ ⊕ , i	TG										🔀 Тоо	ls • 🐺	📫 🗘 Tra	acks 🥷	ð 5
ate 100 150	200 250 300	350 40	00 450	500	550	600	650	700	750	800	850 9	0 950	1 K	1,050	1,100	1,150	1,200	1,250	1,300	1,350	1,400	1,45
ntry_::=_seq_(id	l {local s		-			-	-	K			-				-	-		-	-			
	Primer 1																					-\$
Primer Primer 3 🚔	-r																					╧
50 100 150		350 40	00 450	500	550	600	650	700	750	800	350 9	0 950	1 K	1,050	1,100	1,150	1,200	1,250	1,300	1,350	1,400	1,450
tailed pri	mer report	S																				
ailed pri	mer report	<u>s</u>													-	-						
	•	<u>s</u>																		•	_	
	•	<u>S</u>			·			·		· · · · · · · · · · · · · · · · · · ·											- -	
•	•	<u>S</u>		Tem	plate st	trand	L	ength	Start	Stop	Tm	GC%	Self co	mpleme	ntarity		Self	3' com	plemen			
Primer pair 1				Tem Plus		trand		ength 0	Start 242	Stop 261	Tm 59.89	GC% 55.00	Self co 3.00	mpleme	entarity		Self 1.00		plemen			
Etailed pri Primer pair 1 Forward primer Reverse primer	- Sequence (5'->3')	тсттстб				trand	2							mpleme	ntarity				plemen			

Amplify ~800bp of Duxbl fragment from Assembled Plasmid

Amplfication of both the backbone vector plasmid (pmaxGFP) as well as desired genomic DNA fragment (Duxbl gene) was possible through the designed primers and PCR protocol. Assembly of both these fragments was achieved through the ease of the Gibson Assembly protocol, which promises the use of this method in the future. Our desired CRISPR activation reporter was consturcted successfully, next step is to test the consturct into an easy-to-transfect cell type by deliver CRISPR (Cas9 VP64 and designed gRNA's).

Genome Wide Editing Screening Point mutations, deltions/insertion (genes/genomic fragments Knockout libraries, loss of - function screens, **Transcriptional** gain - of - function Regulation screens CRISPR Activation/Repression, /Cas9 **Epigenomic Modulation**

Using CRISPR technology, researchers can insert synthesized gene drive systems into host organism's genome with a high level of precision and reliability. Specifically, CRISPR activation and repression technology can be used to target practically any promoter region in living organisms to model or even treat genetic illnesses.

- Anti-viral and Cancer Therapies
- Correction of genetic
- abnormalities Engineered Cas9 to alter
- methylation (and regulation) Basic science
- applications
- > Therapeutic use in human cells

cells

- organisms

email@sanchitchopra.com 403 918 5633

CONCLUSION / APPLICATIONS

FUTURE

Transfect promoter plasmid in embryonic stem

Delivery of CRISPR activator (Cas9 VP64) Fuse gene activating Cas9 proteins to different domains for optimized gene activation potential Delivery mechanisms of CRISPR into

ACKNOWLEDGEMENTS

A special thank you to my mentor, Derek Toms, for his expertise and support and Dr.Ungrin for allowing me to work in the laboratory.